반응형

트랜스포머는 시퀀스-투-시퀀스(seq2seq) 모델입니다. 
즉, 데이터에 순서가 있고, 출력 그 자체가 시퀀스인 모든 문제에 적합합니다. 
적용 예로는 기계 번역, 추상적 요약(abstractive summarization), 음성 인식 등이 있습니다. 

 

 

최근 [Vision Transformers (ViT)] 심지어 컴퓨터 비전(computer vision)에서의 최첨단 기술까지 향상시켰습니다.

https://arxiv.org/abs/2006.03677

 

Visual Transformers: Token-based Image Representation and Processing for Computer Vision

Computer vision has achieved remarkable success by (a) representing images as uniformly-arranged pixel arrays and (b) convolving highly-localized features. However, convolutions treat all image pixels equally regardless of importance; explicitly model all

arxiv.org


아래에서 전체 트랜스포머 아키텍처의 시각화를 확인하실 수 있습니다. 
저희는 모든 구성 요소가 무엇을 하는지, 왜 그곳에 있는지, 어떻게 모든 것이 서로 잘 맞물려 작동하는지 설명해드리겠습니다. 
우선, 둘 내부에 여러 신경망 계층(neural network layer)가 있는 인코더(좌측)와 디코더(우측)가 있음을 확인하시기 바랍니다.

코드 예시는 Harvard NLP Group의 [The Annotated Transformer] 및 [트랜스포머에 대한 PyTorch 문서]

https://nlp.seas.harvard.edu/2018/04/03attention.html

 

The Annotated Transformer

———————- There is now a new version of this blog post updated for modern PyTorch. ———————- from IPython.display import Image Image(filename='images/aiayn.png') The Transformer from “Attention is All You Need” has been on a l

nlp.seas.harvard.edu

 

https://pytorch.org/tutorials/beginner/transformer_tutorial.html

'머신러닝 & 텐서플로 & 파이썬' 카테고리의 다른 글

Conda 설치, SSL error 대응  (0) 2020.01.14
cer file을 pem 변환하기  (0) 2020.01.14
GAN 스터디  (0) 2019.03.27
데이타 크롤링  (0) 2018.04.02
머신러닝 유투브 영상모음  (0) 2018.03.29

+ Recent posts